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1. INTRODUCTION

This final report covers research carried out in conjunction with the Naval Research

Laboratory for the performance period 19 September 1986 to 19 September 1987 for Con-

tract N00014-86-C-2454. The research involved was primarily to investigate the interaction

of atomic systems with an applied laser beam and to compute photoabsorption cross-

sections of ions of specific configurations such as argon and xenon. These cross-sections

were calculated at various incident photon energies, and the respective time-dependent

atomic polarizabilities were examined. Comparisons between calculated and experimen-

tally determined cross-sections were made, and laser-atom interactions were examined as

well.

For modeling of radiative properties of x-ray laser plasmas, a variety of atomic data are

needed as input. In the context of photopumping schemes for x-ray lasers, photoionization

and photoexcitation of multielectron atoms and ions (and the inverse process of radiative

3recombination) are particularly important. The electronic population inversion of atomic

states necessary for lasing are brought about by the interplay of these atomic processes.

Accurate calculation of photoionization and photoexcitation cross-sections and rates

are useful in a variety of investigations in plasma physics, astrophysics and atomic physics.

In the modeling of radiation spectra of hot plasmas (via the detailed configuration rate

equation for example), these data are required along with the other bound-bound, bound-

free and free-free processes. As another example, computation of opacities of plasmas for

diagnostic and target response effects require these data as input. In view of these different

applications, there is a need for realistic modeling of these processes to generate accurate

data for a variety of atoms and ions.

Most of the existing calculations of photoionization cross-sections were done using the

single electron or the independent particle model (IPA). In this model, the energy levels

and wave functions of the atom or ion are first calculated using the Hartree-Fock (HF)

method. The interaction of the incident electromagnetic radiation with the atom (or ion)

is treated via the first order perturbation theory1 .
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Comparison of experimental data with the IPA calculations shows that for some simple

systems such as a neutral, few-electron atom (lithium for example), there is a qualitative

and sometimes quantitative agreement. However, for many electron atoms (xenon for

example), substantial discrepencies are found between experimental and IPA data'.

In our work, we used the time-dependent linear response approximation within the

framework of the relativistic density functional method (DFM)2' 3 ,4 to treat the problem of

photoionization. This method incorporates several advantages over the HF-method. For

example, the HF-method is non-local and computationally very elaborate. The DFM, on

the other hand, deals only with a set of local equations and is therefore far less complex

computationally. Despite its local nature, however, extensive applications of the DFM

have proven it to be fairly accurate in obtaining energy levels, wave functions, etc.

In cases in which there are high Z atoms and relativistic treatments are required, the

computational simplicity of the relativistic DFM versus the relativistic HF-methods is even

more apparent. In the DFM, correlation effects of the bound electrons are accounted for in

a simple way via the correlation potential'. The HF-method, on the other hand, does not

take into account electron correlation, although it accounts for non-local exchange effects

appropriately.

The independent particle model does not take into account the polarization effect

of the atom brought about by the incident time-varying radiation field. In the linear re-

sponse method within the DFM, this is treated adequately as will be seen from comparison

with experimental data. In most experimental situations, the incident radiation from syn-

chrotron sources or lasers have field strengths small compared to atomic field strengths.

For those experimental conditions, the present model based on linear response is adequate

and useful. For very strong applied fields, it is necessary to go beyond the linear response

approximation and utilize a full time-depe:adent density functional approach. In the later

part of the report, we will discuss this aspect briefly.
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II. TECHNICAL DISCUSSION
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A. THE METHOD OF CALCULATION

1. Isolated Atoms or Multielectron Ions

The first part of the calculation is to generate the energy-level spectrum and the wave

functions of the particular atom or ion of specific configuration. This is done by using

the local density functional method. In order to treat many-electron atoms (with high Z)

appropriately, relativistic DFM equations are used. In this method, the following set of

equations are solved self-consistently:

[ca p + C2# + u(r)]i(r) = Ei~i(r) (1)Z f p0'd' __

u(r) = -- + I )7 + 9 [p(r)_cz(p(r))] (2)
r jIr - r Oplr

and

p(r) = fit/(r)12 (3)

In the above, p(r) is the electronic charge density of the atom, a's are the Dirac matrices

and fs are the integral occupation factors corresponding to the number of electrons in each

state Oi(r) with corresponding energy eigenvalue Ei. The atomic potential u(r) contains,

in addition to the nuclear and the electrostatic Hartree term, a contribution arising from

the electron exchange and correlation effects. Also, e., is the exchange-correlation energy

of the electrons with the Gunnarsson-Lundquist (G-L) form4 for exchange-correlation en-

ergy and potential is used in actual calculations. It is well known that reliable atomic 0

data is obtained from the use of G-L exchange-correlation. Let us note that the use of

integer occupation factors f31s for the given configuration distinguishes this model from the

"average atom model" in which the occupation factors are taken to be those given by the

statistical Fermi distribution function.
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The orbital functions are four-component spinors. They are split into major and minor

p components

(r) = (2(r)) =(B((4)

where A and B are major and minor components of the radial functions, and Qjim, and

jtm are two-component Pauli spinors with the indicated numbers. The various quantum

numbers are related by

'=l+S, j=1+- , S=I'-S, K=-S(j+- ); S=±-1 (5)
2' 2 '2

The differential equations for A and B (in matrix form) are

d (A) (-K (u-E-C2) \ (A)

BU __-__ ) CS (6)

Equations (1) - (6) are solved numerically to self-consistency to obtain the wave functions

t;s, the binding energies of each orbital Ei, the atomic charge density p(r) and the self-

consistent potential u(r).

Now consider the effect of an incident time-varying radiation field E(t) = Eoe i wt on

the atom. It induces a time-dependent atomic density deviation, 6p(r, t), causing a time-

dependent polarization effect. For the linear response method used here, it is convenient

to work with the Fourier transform

6p(r,t) = S! p(r,w)e-itdw (7)21r J-o

The net induced density due to the external plus the induced potential is

6Pind(r,w) = J X(r, r',w)[Vt(r,w) + Vd(r,w)]dr', (8)

where the induced potential is given by

l y..,(.. ,) = / p(r', w) aVzc(r) "wa

Vrrd(rw)J dr' + V (p(r)) ) (9)
.- Op(r) ,1
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The response function is given by

X(r,r',w)=E fik'(r)t/i(r')G(r,r',Ei ±-o) + fiki(r)/i(r')G*(r,r',Ei -w) (10)
Si i

and thus involves the wave functions and energy levels of the atom. The Green's functions

are solutions of the inhomogeneous Dirac equation

(ca . p + c2/3 + u(r) - E)G(r, r', E) = -b(r- r') (11)

In actual calculation, angular decomposition of the Green's function in terms of spherical

harmonics is done and the radial part is treated separately.

The frequency dependent polarizability a(w) is the ratio of the induced dipole moment

to the external field:

a(w) J I Z6p(r,w)dr (12)

Note that a(w) like bp(r,w) is complex. The induced density deviation (and also the

corresponding induced potential) can have a phase difference with respect to that of the

applied external field. Once a(w) is determined, the photoabsorption cross-section a(w) of

the atom is obtained from

u(w) 4 Ima(w) (13)
C

2. Partial Cross-Sections

In order to see the connection with the IPA-model, consider the partial cross-section 0

due to photoionization from a specific bound state Oj(r) to a final continuum state obf(r).

The initial atomic state is represented as

Oi(r) = Uni(r) YL() (14)
r
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and the final continuum state with wavevector K and energy e as

1'Pe 1'(r)

Vf (r) = 47r 13 AL'iP' Y, ,(K)YL,( ) (15)
L'

The complex coefficients A's are found by requiring tkf(r) to behave asymptotically as an

incident plane wave plus a spherical wave. Then the partial cross-section at is shown to

be

On,(w) = 2(21+1)a wv/,a x IAf < 10011'0 > 12 fP,,(r)VSC(r,.w)Ug(r)dI2 (16)

where < 110011'0 > is a Clebsch-Gordon coefficient.

In Equation (16), VSCF(r,w) is a frequency dependent complex self-consistent po-

tential. Note that if VSCF(r,w) is replaced by the usual dipole moment operator, one

obtains the conventional or independent particle approximation (IPA) result. In actual

calculations, both bound and continuum wave functions are generated numerically using

*the Numerov method for integrating the Dirac equation. Let us also note that the real and

imaginary parts of the self-consistent field contribute to the partial cross-section without

interference. Computations were performed for both the conventional independent particle

model and the time-dependent linear response to density functional method for comparison

purposes.
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B.RESULTS

To see the usefulness of the linear response approximation within the density functional

method, we first discuss the results for a few neutral atoms. The computed photoioniza-

tion cross-section for neutral xenon as a function of photon energy near the 4d-threshold is

shown in Figure 1. The results of the present method (Curve A) are compared with con-

ventional IPA-model results (Curve B). It is seen that the IPA-model does not reproduce

the experimental data6 at all whereas the present model agrees very well with the experi-

mental data over this range of photon energy, including the peak at about 7 Ryd. In that

range, the IPA cross-section shows a rapid decrease which is in contrast to experimental

data.

The reason for this difference in the two models arise from the polarization effect of

the atom subject to the incident radiation. This collective effect is missing in the IPA

s'S calculation. A large number of electrons forming the atom participate in the polarization

process. The external field is screened in the energy range 5 - 6 Ryd (and again in the

range 8.5 - 9.5 Ryd), and is antiscreened in the intermediate 6 - 8 Ryd range. The

antiscreening effect produces a stronger effective field for the 4d-electron to photoionize,

thereby enhancing the cross-section in the intermediate range as seen in Figure 1.

The 3s-partial cross-section for argon is shown in Figure 2. The experimental data' in

the range 30 - 65 eV are depicted by circles with error bars. The conventional IPA-model
w- (Curve A) does not show the experimentally seen variation at all. The present response

function method reproduces the observed variation including the Cooper minimum at

about 43 eV. The occurrence of the Cooper minimum is known to be due to the vanishing

of the matrix element between bound and continuum states at that photon energy. In the

present model, the observed minimum in cross-section occurs because the induced potential

almost exactly cancels out the external field, reducing the effective field to zero.

rap The total cross-section for an argon atom computed according to the present model

also shows better agreement with experimental data9 than the IPA, Hartree-Fock length

and velocity results of Kennedy and Manson'8. This is shown in Figure 3. The HF-velocity

8
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approximation gives, for example, a cross-section twice as large at 40 eV whereas the

HF-length result is six times larger than the experimental data at the same photon energy.

The results of our calculation for aluminum are given in Table II. Aluminum is of

interest in many experimental studies and the data have to be provided by theoretical

calculations. Substantial difference can be seen betwen calculated cross-sections generated

by our present model and those from the IPA-model (Table II). The variation of the

contribution of each electronic state to the total cross-section is also seen from Table II.

The results for neutral sodium are given in Table I. Both the present model and the

IPA calculations show similar features; the cross-section drops in the photon energy range

5 - 7 eV, goes through the minimum and then rises gradually in the 8 - 11 eV range.

This feature is seen experimentally and the data generated from our present model are in

reasonable agreement with experimental observation.

Ions of specific configurations such as neon-like argon or lithium-like carbon are of

interest for x-ray laser systems. No experimental data is available for these ions and thus

the data have to be generated by theoretical calculations. The computed results for these

ions are given in Tables III and IV. For neon-like argon, the collective polarization process

discussed earlier is somewhat more effective than in lithium-like carbon because of the

larger number of bound electrons in a neon-like ion. This contributes to the difference of

the results from present model with the IPA calculations (Table III).

The results presented above are for single atoms or ions without the effect of the

plasma environment. Such a description is appropriate for low density plasmas. For high

density plasmas, however, a number of additional effects such as screening shifts of energy

levels, modification of wave functions of bound and continuum wave functions as well as

potentials of the multielectron ion embedded in the plasma have to be considered.

For proper treatment of these effects, the self-consistent two-component density func-

tional method at finite temperatures ° should be used. The important issue is to study

the modifications of photoabsorption and other atomic cross-sections with variations of

plasma density and temperature. Computations were performed for several hydrogenic

9



RE and lithium-like ions immersed in plasmas of densities and temperatures of interest to

x-ray laser plasmas. The results of these calculations and their importance in overall

modeling of x-ray lasers will be discussed in a seperate report.
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C. LASER-ATOM INTERACTION

The linear response approximation within the density functional method is adequate

for most experimental studies of photoabsorption processes of atoms or ions due to interac-

tion with an applied radiation (such as lasers or synchrotron sources). In some experimental

situations, however, the applied radiation can be very strong and can have electric field

strengths comparable to atomic field strengths. Some of the recent experimental studies

with high power, short pulsed lasers 2 have raised the possibility of development of x-ray

lasers utilizing x-ray emission from excited, multiply-charged ions produced by multipho-

ton ionization processes, for example. A host of atomic physics issues arises in this context:

for development of realistic theoretical models to interpret experimental observations, to

investigate physical mechanisms for generating atomic core vacancies and associated x-ray

fluorescence, coupling of collective modes to the radiation field and atomic cores etc. This

is a new and complex field of research that requires several years of intensive effort to

understand and correlate the effects involved.

To generalize beyond the linear response method, one approach is to utilize the

Vashista-Singwi 1' scheme to calculate a new time-dependent (or frequency dependent)

response function (w) that includes higher order effects. It can be shown that this new

generalized k(w) is related to the linear response function X(w) of Equation (10) used

previously by

x)X( (17)'X1 - G(w)x(w)"

The correction factor G(w) that modifies the response function is determined by the appro-

priate structure factors. Calculations using this method has been performed for electron

systems and are known to give improved results.

The other approach to treat non-linear effects in laser-atom interaction is via the full

time-dependent Schr6inger equation,

ih a~,t) (H~t. + Htnt,)40(r, t) (18)



where Hit = -er* E(t). Unlike linear response approximation, the interaction needs to be

treated in a non perturbative fashion. The full numerical solution for the time-dependent

wave function should be carried out, and the transition amplitudes for atomic processes

can then be calculated. Some work in this direction has been done13 and application

has been made to atomic xenon. The probability of excitation of inner shell electrons by

assuming coherently driven nonlinear motion of outer electronic shell (produced by the

external laser radiation) was calculated with some simplifying assumption. An alternative

approach to treat strong electric field problems is the functional integral method. This

method is particularly suitable to calculate transition amplitudes when contributions of

many excited atomic states are important as is the case for strong laser-atom processes.

More work needs to be done in properly developing these techniques and in applying

these to investigate the various physical processes mentioned earlier and to correlate with

experimental observations.

12



III. CONCLUSIONS

It is demonstrated that the linear response scheme within the framework of density

functional method can provide reliable atomic data for various atoms and ions of experi-

mental interest. This model is particularly useful in those situations where conventional

independent particle models fail to generate accurate data. The atomic stucture code for

multielectron ions of arbitrary Z is of central importance in these calculations. Proper

relativistic treatment is included in our work for high Z ions. The mechanism of time-

dependent polarization of the atom is seen to be important in describing the experimental

observations.

For most experimental situations, the present method is adequate and very useful.

If the applied radiation field strength is very high, suitable generalization of the present
model or developement of new techniques are necessary to treat those conditions. We have 0

pointed out some of the approaches that are useful in this context.
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TABLEI

Neutral Sodium

Photon Electronic Photoionization Cross-Section (Megabarn)
Energy(eV) State ____________________

IPA Present Model

5.0 3sl/2  0.2251 0.5641

5.5 " 0.0734 0.2222

6.0 " 0.0149 0.0719

7.0 0.0052 0.0000

8.0 0.0342 0.0220

9.0 0.0636 0.0576

10.0 0.0853 0.0873

10.2 0.0887 0.0922

10.5 0.0932 0.0989

' 1



TABLE 11 0

Neutral Aluminum

Photon Electronic Photoionization Cross-Section (Megabarn) -6
Energy(eV) State _____________________

IPA Present Model

2 sl/2 0.1069 0.1 191
2pl/2 0.0806 0.0977 0

460 2 P3/2 0.1594 0.1933

3l20.0081 0.0089
3 pig2 0.0041 0.0046

Total 0.3592 0.4236

2s1/2 0.0890 0.0986
2pl/2 0.0604 0.0724

510 2 P3/2 0.1193 0.1431

3sl/2 0.0063 0.0070

3i 0.0012 0.0014

Total 0.2761 0.3225

2/20.0702 0.0772
2 pi /2 0.0418 0.0493

580 2P3/2 0.0825 0.0974

3sl/2 0.0049 0.0054
3p112 0.0004 0.0006

Total 0.1998 0.2298

2si/2 0.0658 0.0723
2pi 2 0.0379 0.0445

600 2p3/2 0.0748 0.0878

3sl/2 0.0047 0.0052
3 pl/2 0.0023 0.0025

Total 0.1854 0.2123



TABLE II CONTINUED

2s1112  0.0489 0.0530
2P1 ,2 0.0240 0.0276

700 2 P3/2 0.0474 0.0544

3,20.0036 0.0039
3pif2 0.0014 0.0015

Total 0.1253 0.1404
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TABLE III I

Neon - like Argon

Photon Electronic Photoionization Cross-Section (Megabarn)
Energy(eV) State

IPA Present Model

395 2 P3/2 1.0061 0.9481

2 Pl/2 0.4984 0.5060

400 2P3/2 0.9905 1.0065

Total 1.4889 1.5125

2Pl/2 0.3952 0.4183

440 2P3/2 0.7807 0.8273

Total 1.1759 1.2457

2Sl/2 0.1981 0.2073

480 2p1/2 0.3188 0.3471
2P3/2 0.6297 0.6863

Total 1.1466 1.2407

2Sl/2 0.1901 0.1995

500 2 Pl/2 0.2867 0.3159

2P3/2 0.5656 0.6239

Total 1.0424 1.1393

2Sl/2 0.1682 0.1776

540 2Pl/2 0.2368 0.2657
2P3/2 0.4668 0.5243

Total 0.8719 0.9676,



TABLE III CONTINUED

2,20.1497 0.1589

560 2pl/2 0.1971 0.2240
2 P3/2 0.3884 0.4419

Total 0.7351 0.8247

2,20.1422 0.1513

600 2,20.1804 0.2063
2P3/2 0.3553 0.4068

Total 0.6779 0.7643

jgijjS



TABLE IV

* Lithium - like Carbon

Photon Electronic Photoionization Cross-Section (Megabam)
Energy(eV) State____________________

IPA Present Model

250 2I 0.0424 0.0370

300 2s1/2 0.0280 0.0275

is 12 0.5968 0.5969
350 2sl 12  0.0193 0.0190

Total 0.6161 0.6159

IsI12  0.4354 0.4444

400 2s,/2 0.0141 0.0141

Total 0.4495 0.4585

1sI/ 0.3088 0.3203
460 2s,/2 0.0100 0.0101

Total 0.3188 0.3304

is11 2  0.2499 0.2613
500 2s,/ 2  0.0081 0.0083

Total 0.2580 0.2695

ISM 0.1954 0.2059
550 2sl/ 2  0.0065 0.0066

Total 0.2019 0.2125

isI12  0.1556 0.1650
600 2/ 0.0051 0.0053

Total 0.1608 0.1703
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